Cat:Rodamiento autolubricante
Los medios cojinetes autolubricantes MXB-JFFB se refieren a cojinetes que cubren solo la mitad de la circunferencia de un eje o eje, brindando soporte...
Ver detalles
En la transmisión de precisión de equipos mecánicos, bujes de placas de cobre jugar un papel fundamental. No solo guían el movimiento sino que también transmiten cargas. Sin embargo, a menudo se convierten en los "componentes de corta duración" en el equipo debido al desgaste severo causado por la solidez o la deformación y el agrietamiento resultante de la tensión excesiva. ¿Cómo se puede resolver este problema? Calcular y controlar científicamente el ajuste de interferencia es el método central para extender la vida útil de los bujes de placas de cobre.
Content
La falla de los bujes de cobre a menudo proviene de un desequilibrio en el ajuste de interferencia:
Síntomas: El ensamblaje se vuelve difícil, y el buje está sujeto a una enorme tensión de compresión radial.
Consecuencias:
Conclusión: La clave para extender la vida útil radica en encontrar un "rango de ajuste de interferencia dorada", una que proporciona suficiente fuerza de unión para eliminar el desgaste de micro-deslizamiento sin generar altas tensiones destructivas.
P_min = μ × (π × d² × l / 2) × T × S_F
Dónde:
T = torque de trabajo máximo (n · mm)
S_f = factor de seguridad (generalmente 1.5–3.0; más alto para la vibración y el impacto)
μ = coeficiente de fricción estática entre el buje de cobre y la base de acero/hierro (típico de 0.1–0.2)
D = diámetro de ajuste (nominal, mm)
L = longitud de ajuste (mm)
Incluso sin cargas externas, se debe mantener una presión básica de 5-15 MPa para evitar micro-deslizamiento.
P_max ≈ s_y × σ_yield
Dónde:
S_y = factor de seguridad de rendimiento (1.2–1.5)
σ_yield = resistencia de rendimiento del material de buje de cobre
Cálculo preciso utilizando la teoría del cilindro de paredes gruesas:
P_max = 3 × σ_yield × [1 - (d_i / d)^4]
Dónde:
d_i = diámetro interno del buje de cobre (mm)
D = diámetro exterior del diámetro del buje/orificio de la base (diámetro de ajuste, mm)
Importante: Compruebe si el estrés en la pared de la base (hierro fundido, aluminio, etc.) excede los límites permitidos.
δ = P × D × (K_CU K_H)
Dónde:
K_cu = (e_cu / (do_cu² - d²)) × [do_cu² d² ν_cu] (parámetros para el buje de cobre)
K_h = (e_h / (d² - di_h²)) × [d² di_h² - ν_h] (parámetros para la base)
E_CU, E_H = Módulo elástico de cobre y base (cobre ~ 110 GPA, acero ~ 210 GPA)
ν_cu, ν_h = Poisson’s Ratios (cobre ~ 0.34, acero ~ 0.3)
Do_cu = diámetro exterior del buje de cobre (= d)
Di_h = diámetro interno del orificio base (0 para base sólida)
Sustituya P_min para obtener Δ_min_th
Sustituya p_max_allowable / s_y para obtener Δ_max_th
Δ_eff ≈ Δ_design - 0.8 × (RZ_CU RZ_H)
RZ_CU, RZ_H = Altura de diez puntos de las irregularidades de la superficie del buje y el orificio base (μm).
El ensamblaje de diferencia de temperatura (ajuste de contracción/expansión) evita la pérdida de aplanamiento.
Valores de diseño corregidos:
Compensación de temperatura: Calcule Δδ causada por la expansión/contracción térmica para garantizar:
Ajuste de la prensa: Requiere orientación precisa, presión uniforme, lubricante (por ejemplo, pasta de disulfuro de molibdeno) y velocidad de presión controlada.
Conjunto de diferencia de temperatura (recomendado):
Actualización de material: Use aleaciones de cobre resistentes al desgaste de alta resistencia (por ejemplo, bronce de aluminio QA110-4-4, bronce de estaño QSN7-0.2).
Optimización estructural:
Extender la vida útil de los bujes de placas de cobre no se trata de "cuanto más apretado, mejor". En cambio, implica equilibrar: Lo suficientemente apretado como para evitar la flojedad, pero no tan apretado como para exceder los límites de estrés del material . Esto requiere:
Para condiciones de operación extremas o nuevos diseños, Simulaciones de análisis de elementos finitos (FEA) y las pruebas de vida útil física de lotes pequeños son esenciales para verificar el diseño de ajuste de interferencia. La combinación de la teoría con la práctica asegura que los bujes de placas de cobre logren una vida útil más larga, lo que permite una operación de equipo más suave y confiable.
Los medios cojinetes autolubricantes MXB-JFFB se refieren a cojinetes que cubren solo la mitad de la circunferencia de un eje o eje, brindando soporte...
Ver detalles
El rodamiento compuesto sin aceite MXB-DUF, también conocido como manguito SF-1F, es un rodamiento deslizante laminado tipo brida con placa de acero c...
Ver detalles
La maquinaria y los equipos de minería son muy fáciles de usar durante su uso. Para extender la vida útil del equipo, Mingxu Machinery recomienda util...
Ver detalles
En la industria de la construcción, las placas autolubricantes resistentes al desgaste MXB-JUWP se utilizan principalmente para la protección de estru...
Ver detalles
Las placas de desgaste autolubricantes MXB-JOML están diseñadas para minimizar la fricción y extender la vida útil en aplicaciones industriales. El pr...
Ver detalles
Los rieles guía autolubricantes MXB-JGLX cubren múltiples propiedades, como alta resistencia al desgaste, resistencia a altas temperaturas, resistenci...
Ver detalles
El cojinete básico de bronce SF-1B está hecho de bronce al estaño como base, polvo esférico de bronce sinterizado en el medio y PTFE laminado y mat...
Ver detalles
SF-1T es un producto de fórmula especial diseñado para condiciones de trabajo de alto valor PV de la bomba de aceite de engranajes. El producto tie...
Ver detalles
El bloque de desgaste sólido con incrustaciones de hierro fundido de 20 mm es un accesorio resistente al desgaste de alto rendimiento que combina u...
Ver detalles
Las placas deslizantes sin aceite a base de acero están hechas de acero de alta resistencia como material base, con excelente capacidad de carga y ...
Ver detalles
Contáctenos